

Asymmetric response of European near-surface wind speed to CO₂

removal 2 3 Zhi-Bo Li¹, Chao Liu², Cesar Azorin-Molina³, Soon-Il An^{2,4}, Yang Zhao^{5,6}, Yang Xu⁷, 4 Jongsoo Shin⁸, Deliang Chen^{9,1}, Cheng Shen^{1,*} 5 6 ¹ Regional Climate Group, Department of Earth Sciences, University of Gothenburg, 7 Gothenburg, Sweden 8 ² Irreversible Climate Change Research Center, Yonsei University, Seoul, South Korea 9 ³ Centro de Investigaciones sobre Desertificación, Consejo Superior de Investigaciones 10 Científicas (CIDE, CSIC-UV-Generalitat Valenciana), Climate, Atmosphere and Ocean 11 Laboratory (Climatoc-Lab), Moncada, Valencia, Spain 12 ⁴ Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea 13 ⁵ Frontiers Science Center for Deep Ocean Multispheres and Earth System-14 Key Laboratory of Physical Oceanography-Institute for Advanced Ocean Studies-15 Academy of the Future Ocean, Ocean University of China, Qingdao, China 16 17 ⁶ College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China ⁷ Department of Atmospheric Science, Yunnan University, Kunming, China 18 ⁸ Woods Hole Oceanographic Institution, Woods Hole, MA, USA 19 ⁹ Department of Earth System Sciences, Tsinghua University, Beijing, China 20 21 22 *Corresponding author: Cheng Shen (cheng.shen@gu.se) 23 24 **Key words:** 25 26 CO2 removal; AMOC; near-surface wind; European wind; Asymmetric response; Northern hemisphere 27 28

Abstract

Understanding the changes in near-surface wind speed (NSWS) is crucial for weather extremes and wind energy management. This study examines the response of NSWS to atmospheric carbon dioxide (CO₂) removal using large ensemble simulations and the Carbon Dioxide Removal Model Intercomparison Project models. Our results indicate that increasing CO₂ levels lead to an overall reduction in the Northern Hemisphere (NH) extratropical NSWS over land. Subsequent CO₂ reduction during the early ramp-down period rapidly restores NH NSWS. However, this recovery stalls and enters a declining trend during the late ramp-down period, mainly due to opposite negative NSWS trends in Europe. Notably, the rapid recovery of simultaneous Atlantic Meridional Overturning Circulation (AMOC) counteracts the recovery of North Atlantic air meridional temperature gradient and the westerly jet by global cooling, therefore prolonging NH mid-latitudes NSWS weakening. Our findings underscore the pivotal role of AMOC in modulating NSWS under varying CO₂ concentrations and provides insights for future climate adaptation.

1 Introduction

The phenomena of terrestrial near-surface wind speed (~10 m above the ground; NSWS) "stilling" and "reversal" have been recognized for over a decade, yet significant gaps remain in understanding these processes (Wu et al., 2018; Zeng et al., 2019). Future projections of NSWS have garnered significant attention partly due to their implications for wind energy development (Karnauskas et al., 2018; Zeng et al., 2019; Zhang and Li, 2020; Pryor et al., 2021; Shen et al., 2024). Several studies have investigated the spatiotemporal variations of

52 end of this century based on climate models, revealing global and regional variations driven by polar amplification and altered land-sea thermal gradients (Bichet et al., 2012; Karnauskas 53 54 et al., 2018; Shen et al., 2021; Zha et al., 2021; Deng et al., 2022). Future projections using 55 these models, mostly from the Coupled Model Intercomparison Project Phases 5 and 6 (CMIP5 and CMIP6) (Taylor et al., 2012; O'Neill et al., 2016), suggest a robust reduction in 56 NSWS across the mid-latitudes of the Northern Hemisphere (NH) land in the 21st century, 57 58 while an increase across the Southern Hemisphere (Karnauskas et al., 2018; Zha et al., 2021; Deng et al., 2022; Shen et al., 2022). However, the ideal CO₂ experiments in CMIP5 and 59 CMIP6 mainly consider an increased carbon emission scenario by the end of the 21st century, 60 and the further potential CO₂ removal impact on NSWS has not been studied. Understanding 61 62 this response is crucial in light of imperative decarbonization goals and the extensive 63 deployment of wind power (Lei et al., 2023). The irreversibility and asymmetry of various climate phenomena have been investigated 64 65 under CO₂ ramp-up and ramp-down experiments using the global climate models. Many studies used "1pctCO2" experiment as the ramp-up period, in which the CO2 concentration 66 gradually increases at a rate of 1% per year for 140 years until it quadruples (Eyring et al., 67 2016). On this basis, different scenarios of ramp-down period are performed to study the 68 69 reversibility of CO₂ induced climate change (Wu et al., 2010; Cao et al., 2011; Boucher et al., 70 2012; MacDougall, 2013; Wu et al., 2014; Ma et al., 2016; Field and Mach, 2017; Ehlert and 71 Zickfeld, 2018). Meanwhile, the Carbon Dioxide Removal Model Intercomparison Project (CDRMIP) in CMIP6 has been launched to provide 1pctCO2-carbon dioxide removal 72

NSWS in response to atmospheric carbon dioxide (CO₂) forcing in the coming years until the

73 experiment as the ramp-down period, in which the climate initiates from the end of the 74 1pctCO₂ experiment and the evolution of CO₂ concentration mirrors that in the 1pctCO₂ experiment (Keller et al., 2018). And the projection uncertainties related to different model 75 76 frameworks could also be investigated by these experiments (Zhang et al., 2023; Jin et al., 77 2024; Su et al., 2024). 78 Following the CDRMIP protocol (Keller et al., 2018), An et al. (2021) conducted largeensemble simulations of CO2 ramp-up and ramp-down simulations using the Community 79 80 Earth System Model version 1.2 (CESM1.2). It is found that major ocean circulation systems, particularly the Atlantic Meridional Overturning Circulation (AMOC) shows a unique delayed 81 recovery that significantly shapes the responses of other climatic factors (An et al., 2021; Oh 82 et al., 2022). On this basis, following studies extend to the hydrological cycle (Yeh et al., 2021; 83 84 Kim et al., 2022; Kug et al., 2022), El Niño-Southern Oscillation (Liu et al., 2023a, b; 85 Pathirana et al., 2023), Hadley cell (Kim et al., 2023), gross primary productivity (Yang et al., 2024) and mid-latitude storm tracks (Hwang et al., 2024), all showing varying degrees of 86 87 irreversibility. For the aspect of wind speed, Hwang et al. (2024) found that cyclone-related surface wind extremes become more frequent in southern North America and Europe in the 88 late CO2 removal period, while changes in the mean NSWS have received little attention. 89 Given that CESM has a reasonable performance in reproducing global historical NSWS 90 91 (Shen et al., 2022), and the wind energy resources are expected to be significantly developed 92 in the NH mid-latitudes (Pryor et al., 2020). We are motivated to investigate how NSWS in 93 the NH mid-latitudes would respond to future CO₂ removal by using the CESM1.2 simulations and three available CMIP6 models participating the CDRMIP project. 94

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

2 Data and Method

2.1 CESM1.2 Simulations

The CESM1.2 (Hurrell et al., 2013) includes the atmosphere (Community Atmospheric Model version 5), ocean (Parallel Ocean Program version 2), sea ice (Community Ice Code version 4), and land models (Community Land Model version 4). The atmospheric model features a horizontal resolution of approximately 1° and 30 vertical levels (Neale et al., 2012). The ocean model comprises 60 vertical levels, with a longitudinal resolution of about 1° and a latitudinal resolution of about 0.3° near the equator, increasing gradually to about 0.5° near the poles (Smith et al., 2010). The land model includes the carbon-nitrogen cycle (Lawrence et al., 2011). The experiment followed idealized CO₂ scenarios in two phases (An et al., 2021). In the first phase, the CO2 concentration was held constant at 367 ppm, representing present-day levels, and the model is integrated for 900 years. In the second phase, the CO₂ concentration increased from 367 ppm to 1,478 ppm at a rate of 1% per year over 140 years (2001-2140: ramp-up period), then decreased back to 367 ppm at the same rate over the next 140 years (2141–2280: ramp-down period). After the ramp-down period, CO₂ levels were stabilized at 367 ppm for 220 years (2281–2500: stabilization period). This second phase was run with 28 ensemble members, each starting from different initial conditions taken from the present-day period, representing various phases of multi-decadal climate oscillations such as the Atlantic Multidecadal Oscillation and Pacific Decadal Oscillation. Such large ensemble simulations

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

provide a sufficient tool to separate the forced responses from internal variability, making it effective in assessing forced changes in regional NSWS (Li et al., 2019; Deser et al., 2020; Zha et al., 2021). 2.2 CDRMIP Simulations We utilized CMIP6 models in the CDRMIP to verify the results of CESM1.2. Notably, CanESM5, MIROC-ES2L, and NorESM2-LM models are the only three available models with variables of "sfcWind" (near-surface wind speed) and "msftmz" (stream function, for calculating AMOC), and each model contains one realization. We compared terrestrial NSWS (60°S-70°N) climatology in their piControl experiments with the ERA5 (Hersbach et al., 2020), and found that the pattern correlation coefficients are 0.85, 0.81, 0.72, and 0.89 for CESM1.2, CanESM5, MIROC-ES2L, and NorESM2-LM, respectively. Indicating their reasonable ability in reproducing the large-scale characteristics of terrestrial NSWS. 2.3 AMOC Index The AMOC index was calculated as the maximum stream function value at 26.7°N in the North Atlantic (0°N-70°N, 60°W-30°E), providing a robust measure of AMOC strength and variability across different simulation phases (An et al., 2021). 2.4 Statistical Methods To facilitate consistent analysis, all data were bi-linearly interpolated to a uniform 1.5° × 1.5° grid for both latitude and longitude. All calculations related to NSWS are focused on the land regions. An 11-year running mean was used for all physical variables, unless otherwise stated. To clarify and quantify the contributions of global-mean surface air temperature and

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

AMOC to NSWS changes, we performed a bi-regression analysis. This analysis allowed us to assess the proportion of NSWS variance explained by each factor during different periods.

3 NSWS Responses to CO₂ Ramp-up and Ramp-down

In the CESM1.2 simulations, the annual global-mean surface air temperature (GMST) increases by about 5°C from 2000 to 2140 (Figure 1a). This warming trend reverses during the ramp-down period (2141–2280) as CO₂ concentrations decrease, but the cooling trend is less pronounced than the prior warming. During the stabilization period (2281-2500), GMST remains approximately 1°C above the year 2000 levels for about 40 years before gradually declining until 2500. Spatially, the ramp-up period shows pronounced warming over highlatitude land areas and less over the oceans (Figure S1a). The Subpolar North Atlantic (SNA) exhibits minimal warming, known as "warming hole" or "cold blob" (Chemke et al., 2020; Keil et al., 2020; Rahmstorf, 2024), and is likely due to reduced heat transport associated with a weakening AMOC under global warming (Zhang et al., 2019). Conversely, during the rampdown period (2141-2280), most areas cool, including the SNA (Figure S1b). The asymmetric surface air temperature (SAT) trend over the SNA is mostly related to the late recovery of the AMOC during the late ramp-down period (2221–2280), which is influenced by increased salt advection feedback due to changes in the subtropic-to-subpolar salinity gradient and ocean stratification (An et al., 2021; Oh et al., 2022). During the CO₂ ramp-up period (2001–2140), the NH-averaged (20°N–70°N) annualmean NSWS decreased, consistent with projections by CMIP6 models (Zha et al., 2021; Shen

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

et al., 2022). The ramp-down period is divided into early (2141–2220) and late (2221–2280) ramp-down periods (An et al., 2021). During the early ramp-down period (2141–2220), NSWS in the NH extratropics quickly rebounds to 2000 levels at about double the rate of the rampup period. The corresponding SAT pattern features stronger cooling over the SNA (Figure S1c), similar to the ramp-up period, indicating a strengthened meridional SAT gradient. During the late ramp-down period (2221-2280), NSWS trend moderate across the NH extratropics (Figure 1b), accompanied by a notable warming trend over the SNA and weaker cooling trends over the high latitudes of the NH compared to the early ramp-down period (2141–2220) (Figures S1c-d). Throughout the stabilization period (2281-2500), NSWS trends in the NH continue to decline for several decades before gradually increasing towards the end of the period. To investigate the regional reversibility of NSWS under CO₂ forcing, Figures 2a-d show the spatial patterns of NH NSWS trends during the ramp-up, ramp-down, early ramp-down, and late ramp-down periods, respectively. During the ramp-up period (2001–2140) (Figure 2a), significant negative NSWS trends dominate the mid-latitudes of the NH. During the rampdown period (2141–2280), this spatial pattern reverses (Figure 2b), with a pattern correlation coefficient of -0.9 (P<0.01) between the ramp-up and ramp-down periods, highlighting a substantial impact of CO2 on global NSWS patterns. Spatial discrepancies between two rampdown periods are primarily observed over the Eurasia continent: during the early ramp-down period (2141-2220), NSWS shows marked positive trends (Figure 2c); however, these positive trends turn negative in Europe and diminish in North America and Central Asia in the late ramp-down period (2221–2280) (Figure 2d).

We further examined NSWS responses in three CMIP6 models from CDRMIP to testify the CESM1.2-based results (Figures S2 and S3). It is found that the time series of NSWS over the NH extratropics are generally similar across the three models (Figure S2), as are the spatial patterns of NSWS trends (Figure S3). However, there are also some evident inter-model differences between the CDRMIP models and the CESM1.2 model. A fast recovery of NSWS is observed in the NH extratropics in the CESM1.2 during the early ramp-down period (Figure 1b), while it shows symmetric changes in three CDRMIP models during the ramp-down period (Figure S2). The discrepancies are partly related to a different AMOC evolution in the CESM1.2, which will be discussed in the next section.

4 Effect of AMOC on Modulating the NH Extratropical NSWS

Previous studies suggested that hemispheric NSWS changes are influenced by the large-scale meridional SAT gradient (Zha et al., 2021; Deng et al., 2022; Shen et al., 2022; Li et al., 2024), with NH mid-latitude NSWS changes being closely linked to the westerly jet through the vertical downward transport of upper-level horizontal momentum (Shen et al., 2023; Shen et al., 2025). Moreover, the strength of the AMOC critically affects these regional patterns by modulating the meridional SAT gradient and the westerly jet through its control of the SNA temperature (Zhang et al., 2019; An et al., 2021; Hwang et al., 2024). Figure 3a shows the evolution of the AMOC index in the CESM1.2, revealing a weakening trend during the rampup period until 2200, followed by a rapid strengthening trend until 2300. Temporal changes of AMOC are similar among three CDRMIP models (Figure S4), with symmetric decreasing and increasing trends during ramp-up and ramp-down periods. The different responses of AMOC

202 would influence regional temperature gradient, further modulate regional atmospheric 203 circulation (Hwang et al., 2024). To disentangle the effects of CO₂ levels and AMOC on NSWS variations, we analyzed 204 the temporal evolution of meridional SAT gradients and westerly jets across both the NH and 205 North Atlantic (NA) (Figures 3b-e). The meridional SAT gradient was defined as the SAT 206 difference between mid-latitude (60°N-90°N) and tropical (0°N-30°N) bands. Mid-latitude 207 westerly jets were defined as the average 500 hPa zonal winds for 30°N-60°N. A significant 208 209 negative correlation (-0.78, P<0.01) exists between the NH extratropical NSWS and the NH SAT gradient (Figure 3b), whereas a strong positive correlation (0.91, P<0.01) is detected with 210 the NH westerly jet (Figure 3c). During the ramp-up period (2001–2140), the weakened NH 211 SAT gradient contributed to a reduced westerly jet and a weakening NSWS trend across 212 213 extratropics. The NH extratropical NSWS trend reverses in the early ramp-down period 214 (2141-2220) as the NH SAT gradient and westerly jet recovers. However, in the late rampdown period (2221-2280), the NH SAT gradient enhanced a bit (Figure 3b), while both the 215 216 NH westerly jet (Figure 3c) and extratropical NSWS (Figure 1b) change slow, disregarding the CO2-removal induced global cooling. These observations suggest an effect from the 217 AMOC, which strongly modulates the SAT gradient in the NA, and thus local NSWS trends. 218 During the ramp-up period (2001–2140), the NA SAT gradient weaken by approximately 219 220 1°C (Figure 3d), a smaller change compared to the 6.5°C reduction in the NH SAT gradient 221 (Figure 3b). Actually, the NA SAT gradient changes are modulated by two combined effects: 222 CO₂-induced global warming/cooling and the AMOC strength (Zhang et al., 2019). This 223 milder NA SAT gradient change is related to a weakened AMOC's role in transporting warm

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

water to the SNA, which partially offsets the hemisphere-scale SAT gradient weakening induced by global warming (Figure 3d). In the early ramp-down period (2141–2220), the synergistic effects of global cooling and a further weakened AMOC promote a stronger enhancement of the NA SAT gradient (Figure 3d) and westerly jet (Figure 3e). Conversely, during the late ramp-down period (2221–2280), the fast recovery of the AMOC dramatically increases warm water flow to the SNA (Figure S1d), diminishes the NA SAT gradient (Figure 3d) despite the prevailing global cooling effect from CO₂-removal, and leads to a weakened NA westerly jet (Figure 3e). The annual-mean 500 hPa zonal wind patterns (Figure 4) reflect similar tendencies to those of NSWS in the NH, particularly across mid-latitudes where enhanced zonal winds correlate with increased NSWS (Figure 2), and vice versa. Throughout the ramp-up period (2001–2140), there is a general weakening trend of westerly jets over the mid-latitude regions of the Asian and North American continents, while regional westerlies intensify over NA and Europe (Figure 4a). The early ramp-down period (2141-2220) witnesses significant strengthening trend of NH westerly jets (Figure 4c), propelled by global cooling and a weakened AMOC (Figure S1c). During the late ramp-down period (2221-2280), recovery of the AMOC causes significant weakening of westerly jets over NA and Europe by reducing the NA SAT gradient (Zhang et al., 2019; An et al., 2021; Hwang et al., 2024) (Figures 3d-e, and S5d), which correspondingly weakens NSWS over Europe (Figure 2d). To further demonstrate the effect of the AMOC on changes in the NA SAT gradient and westerly jet, Figure 5 displays the inter-ensemble correlation coefficients between the 28 ensemble members for the AMOC, NA SAT gradient, NA westerly jet, and European (30°N-

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

60°N, 5°W-60°E) NSWS. The cross-member correlations are not significant during the rampup period (2001–2140) but become prominent in the late ramp-down period (2221–2280), underscoring the crucial effect of AMOC recovery on weakening the NA SAT gradient and westerly jet, leading to strong reductions in European NSWS. These findings indicate that the fast recovery of the AMOC plays a dominant role in shaping the westerly jet during the late ramp-down period, and consequently, the extratropical NSWS. Moreover, we performed bi-regression analysis using GMST and AMOC to fit the changes of NSWS in NH extratropics during three periods. During the ramp-up period (2001– 2140), GMST and AMOC explain the variance of NH extratropical NSWS for 98% and 1.2%, respectively. During the early ramp-down period (2141-2220), GMST and AMOC explain 95.3% and 4.2% of the variance, respectively. While during the late ramp-down period (2221-2280), GMST and AMOC explain 24.5% and 73.2% of the variance, respectively. The regression results show changes in GMST make the dominant role in regulating NH extratropical NSWS during the ramp-up and early ramp-down periods, when AMOC shows gradually weakening trend. But the effect of AMOC plays a key role during the late rampdown period due to the fast recovery of AMOC. The results are consistent with those in Fig. S6c, suggesting that the trends of the NSWS are not simply in phase with the evolution of either CO2 or the AMOC.

264

265

266

267

5 Summary and Outlook

In this study, we utilize a CESM1.2 CO₂ removal experiment to assess the response of NSWS to anthropogenic CO₂ emission levels. Our analyses reveal an asymmetric response of

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

the NH extratropical NSWS during the CO₂ ramp-up (2001–2140) and ramp-down (2141– 2280) periods. Figure 6 summarizes the physical mechanisms about how CO₂ and AMOC heat transport modulate European NSWS changes. During the ramp-up period, NSWS shows decreasing trends in the NH extratropics. During the early ramp-down period, NSWS substantially intensifies, facilitated by the combined effects of a weakened AMOC and the global cooling induced by CO2 removal. These conditions strengthened the meridional SAT gradient and the tropospheric westerly jet, enhancing NSWS at these latitudes. In contrast, during the late ramp-down period, a rapid recovery of the AMOC leads to significant reductions in the North Atlantic SAT gradient and westerly jet. This effect is stronger than the global cooling induced by CO2 removal, markedly weakening NSWS over Europe and resulting in an NSWS decrease over the NH. The European NSWS changes follow anticlockwise trajectories in relation to CO₂ concentrations (Figure 7a), indicating stronger NSWS during the CO₂ removal period than during the CO₂ increasing period at identical CO₂ concentrations (Kim et al., 2022). Although there are also asymmetries of NSWS over Aisa and North America (Figures 7b–c), but the amplitudes are much weaker than that over Europe. These phenomena imply the effect of AMOC is crucial to European NSWS. Moreover, three models from the CDRMIP reasonably replicate NSWS changes over the extratropics. The reason why CDRMIP models can not reproduce the asymmetric NSWS response is due to the symmetric AMOC evolution during the ramp-down period, which means the AMOC's effects are linearly in these models. Before this study, the impact of the AMOC on terrestrial NSWS changes had been less recognized. Our results advance the understanding in wind research community, offering

valuable insights into long-term NSWS dynamics. The enhanced NH NSWS during the early CO₂ removal period could significantly increase wind energy production (Pryor et al., 2020) but also heighten the risks of wind-related extremes (Hwang et al., 2024; Yu et al., 2024). Therefore, it is critical for monitoring efforts and climate policy formulations to consider these findings in their long-term climate strategies to optimize benefits and mitigate risks associated with wind energy and climate interventions.

Declaration of competing interests

298 The authors declare no conflicts of interest.

299 Acknowledgments

This work is supported by the Swedish Formas (2023-01648) and the Swedish Research Council (VR: 2021-02163). Z.-B. L. is also supported by the Swedish Formas (2020-00982). C.A-M. is also supported by the CSIC Interdisciplinary Thematic Platform (PTI) "PTI+ Clima y Servicios Climáticos" and the RED-CLIMA 2 (ref. LINCG24042). S.-I.A. is also supported by National Research Foundation of Korea grants funded by the Korean government (NRF-2018R1A5A1024958). C.S. is also supported by the Sven Lindqvists Forskningsstiftelse, Stiftelsen Längmanska kulturfonden (BA24-0484) and Adlerbertska Forskningsstiftelsen (AF2024-0069). The CESM simulation was conducted on the supercomputer supported by the National Center for Meteorological Supercomputer of Korea Meteorological Administration (KMA), the National Supercomputing Center with supercomputing resources, associated technical support (KSC-2021-CHA-0030), and the Korea Research Environment Open NETwork (KREONET).

312 Data Availability

- 313 All data used in this study are publicly available. The CESM1.2 outputs are available from
- 314 https://data.mendeley.com/datasets/f5ry6hgxkw/2. CMIP6 outputs are available from the
- 315 Earth System Grid Federation (https://esgf-data.dkrz.de/projects/esgf-dkrz/). And ERA5
- 316 reanalysis data are available from the European Centre for Medium-Range Weather Forecasts
- 317 (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-
- 318 levels?tab=overview).

319

321

322

Supplementary Information

320 The manuscript contains supplementary materials.

References

- An, S.-I., J. Shin, S.-W. Yeh, S.-W. Son, J.-S. Kug, S.-K. Min, and H.-J. Kim (2021). Global cooling hiatus driven by an AMOC overshoot in a carbon dioxide removal scenario, *Earth's Future*, *9*, e2021EF002165. https://doi.org/10.1029/2021EF002165
- Bichet, A., M. Wild, D. Folini, and C. Schar (2012). Causes for decadal variations of wind speed over land: Sensitivity studies with a global climate model, *Geophysical Research Letters*, *39*(11). https://doi.org/10.1029/2012GL051685
- Boucher, O., P. R. Halloran, E. J. Burke, M. Doutriaux-Boucher, C. D. Jones, J. Lowe, M. A. Ringer, E. Robertson, and P. Wu (2012). Reversibility in an Earth System model in response to CO2 concentration changes, *Environmental Research Letters*, 7, 024013. https://doi.org/10.1088/1748-9326/7/2/024013
- Cao, L., G. Bala, and K. Caldeira (2011). Why is there is a short-term increase in global precipitation in response to diminished CO₂ forcing? *Geophysical Research Letters*, 38, L06703. https://doi.org/10.1029/2011GL046713
- Chemke, R., L. Zanna, and L. M. Polvani (2020). Identifying a human signal in the North
 Atlantic warming hole. *Nature Communications*, 11(1), 1–7.

 https://doi.org/10.1038/s41467-020-15285-x
- Deng, K., W. Liu, C. Azorin-Molina, S. Yang, H. Li, G. Zhang, L. Minola, and D. Chen (2022).

 Terrestrial stilling projected to continue in the Northern Hemisphere mid-latitudes,

 Earth's Future, 10(7), e2021EF002448. https://doi.org/10.1029/2021EF002448
- Deser, C., F. Lehner, K. B. Rodgers, T. Ault, T. L. Delworth, P. N. DiNezio, A. Fiore, C. Frankignoul, J. C. Fyfe, and D. E. Horton (2020). Insights from Earth system model initial-condition large ensembles and future prospects, *Nature Climate Change*, 10(4),

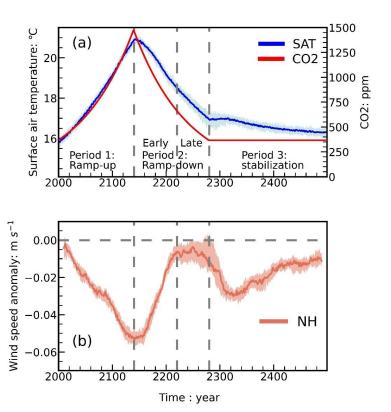
- 345 277–286. https://doi.org/10.1038/s41558-020-0731-2
- Ehlert, D, and K. Zickfeld (2018). Irreversible ocean thermal expansion under carbon dioxide removal, *Earth System Dynamics*, 9(1), 197–210. https://doi.org/10.5194/esd-9-197-2018
- Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experiment design and organization, *Geoscientific Model Development*, 9, 1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
- Field, C. B., and K. J. Mach (2017). Rightsizing carbon dioxide removal, *Science*, *356*(6339), 706–707. https://doi.org/10.1126/science.aam9726
- Hersbach, H., B. Bell, P. Berrisford, S. Hirahara, A. Horányi, J. Muñoz-Sabater, J. Nicolas, C.
 Peubey, et al. (2020). The ERA5 global reanalysis, *Quarterly Journal of the Royal Meteorological Society*, 146(730), 1999-2049. https://doi.org/10.1002/qj.3803
- Hurrell, J. W., M. M. Holland, P. R. Gent, S. Ghan, J. E. Kay, and P. J. Kushner (2013). The community earth system model: A framework for collaborative research. *Bulletin of the American Meteorological Society*, 94(9), 1339–1360. https://doi.org/10.1175/BAMS-D-12-00121.1
- Hwang, J., S.-W. Son, C. I. Garfinkel, T. Woollings, H. Yoon, S.-I. An, S.-W. Yeh, S.-K., Min,
 J.-S. Kug, and J. Shin (2024). Asymmetric hysteresis response of mid-latitude storm
 tracks to CO₂ removal, *Nature Climate Change*, 14, 496–503.
 https://doi.org/10.1038/s41558-024-01971-x
- Jin, J., D. Ji, X. Dong, K. Fei, R. Guo, J. He, Y. Yu, et al. (2024). CAS-ESM2.0 dataset for the
 Carbon Dioxide Removal Model Intercomparison Project (CDRMIP), Advances in
 Atmospheric Sciences, 41, 989–1000. https://doi.org/10.1007/s00376-023-3089-3
- Karnauskas, K. B., J. K. Lundquist, and L. Zhang (2018). Southward shift of the global wind energy resource under high carbon dioxide emissions, *Nature Geoscience*, *11*(1), 38–43. https://doi.org/10.1038/s41561-017-0029-9
- Keil, P., T. Mauritsen, J. Jungclaus, C. Hedemann, D. Olonscheck, and R. Ghosh (2020).
 Multiple drivers of the North Atlantic warming hole. *Nature Climate Change*, 10(7), 667–671. https://doi.org/10.1038/s41558-020-0819-8
- Keller, D. P., A. Lenton, V. Scott, N. E. Vaughan, N. Bauer, D. Ji, C. D. Jones, et al. (2018).
 The Carbon Dioxide Removal Model Intercomparison Project (CDRMIP): rationale and
 experimental protocol for CMIP6, *Geoscientific Model Development*, 11(3), 1133–1160.
 https://doi.org/10.5194/gmd-11-1133-2018
- Kim, S.-K., J. Shin, S.-I. An, H.-J. Kim, N. Im, S. Xie, J.-S. Kug, and S.-W. Yeh (2022).
 Widespread irreversible changes in surface temperature and precipitation in response to
 CO₂ forcing, *Nature Climate Change*, 12, 834–840. https://doi.org/10.1038/s41558-022-01452-z
- Kim, S.-Y., Y.-J. Choi, S.-W. Son, K. M. Grise, P. W. Staten, S.-I. An, S.-W. Yeh, J.-S. Kug, S.-K. Min, and J. Shin (2023). Hemispherically asymmetric Hadley cell response to CO₂ removal, Science Advances, 9(30), eadg1801. https://doi.org/10.1126/sciadv.adg1801
- 387 Kug, J.-S., J.-H. Oh, S.-I. An, S.-W. Yeh, S.-K. Min, S.-W. Son, J. Kam, Y.-G. Ham, and J.

- Shin (2022). Hysteresis of the intertropical convergence zone to CO₂ forcing, *Nature Climate Change*, 12, 47–53. https://doi.org/10.1038/s41558-021-01211-6
- Lawrence, D. M., K. W. Oleson, M. G. Flanner, P. E. Thornton, S. C. Swenson, P. J. Lawrence, et al. (2011). Parameterization improvement sand functional and structural advances in Version 4 of the community land model. *Journal of Advances in Modeling Earth Systems*, 3(3), 1–27. https://doi.org/10.1029/2011ms000045
- Lei, Y., Z. Wang, D. Wang, X. Zhang, H. Che, X. Yue, C. Tian, J. Zhong, L. Guo, L. Li, H. Zhou, L. Liu, and Y. Xu (2023). Co-benefits of carbon neutrality in enhancing and stabilizing solar and wind energy, *Nature Climate Change*, *13*, 693–700. https://doi.org/10.1038/s41558-023-01692-7
- Li, Z.-B., Y. Sun, T. Li, T. Hu, and Y. Ding (2019). Future changes in East Asian summer monsoon circulation and precipitation under 1.5 to 5 °C of warming, *Earth's Future*, 7(12), 1391–1406. https://doi.org/10.1029/2019EF001276
- Li, Z.-B., Y. Xu, H.-S. Yuan, Y. Chang, and C. Shen (2024). AMO footprint of the recent near-surface wind speed change over China, *Environmental Research Letters*, 19, 114031. https://doi.org/10.1088/1748-9326/ad7ee4
- Liu, C., S.-I. An, F. Jin, J. Shin, J.-S. Kug, W. Zhang, M. F. Stuecker, X. Yuan, A. Xue, X. Geng, and S.-K. Kim (2023a). Hysteresis of the El Niño–Southern Oscillation to CO₂ forcing, *Science Advances*, *9*(31), eadh8442. https://doi.org/10.1126/sciadv.adh8442
- Liu, C., S.-I. An, F. Jin, M. F. Stuecker, W. Zhang, J.-S. Kug, X. Yuan, J. Shin, A. Xue, X. Geng and S.-K. Kim (2023b). ENSO skewness hysteresis and associated changes in strong El Niño under a CO₂ removal scenario, *npj Climate and Atmospheric Science*, 6, 117. https://doi.org/10.1038/s41612-023-00448-6
- Ma, J., G. R. Foltz, B. J. Soden, G. Huang, J. He, and C. Dong (2016). Will surface winds
 weaken in response to global warming? *Environmental Research Letters*, 11, 124012.
 https://doi.org/10.1088/1748-9326/11/12/124012
- MacDougall. A. H., (2013). Reversing climate warming by artificial atmospheric carbon-dioxide removal: Can a Holocene-like climate be restored? *Geophysical Research Letters*,
 40(20), 5480–5485. https://doi.org/10.1002/2013GL057467
- Neale, R. B., C.-C. Chen, A. Gettelman, P. H. Lauritzen, S. Park, D. L. Williamson, et al.
 (2012). Description of the NCAR community atmosphere model (CAM 5.0). NCAR Tech.
 Note NCAR/TN-486+ STR (pp. 1–12). National Center for Atmospheric Research.
- Oh, J.-H., S.-I. An, J. Shin, and J.-S. Kug (2022). Centennial memory of the Arctic Ocean for future Arctic climate recovery in response to a carbon dioxide removal. *Earth's Future*, 10(8), e2022EF002804. https://doi.org/10.1029/2022EF002804
- O'Neill, B. C., C. Tebaldi, D. P. Van Vuuren, V. Eyring, P. Friedlingstein, G. Hurtt, R. Knutti,
 E. Kriegler, et al. (2016). The scenario model intercomparison project (ScenarioMIP) for
 CMIP6, Geoscientific Model Development, 9(9), 3461–3482.
 https://doi.org/10.5194/gmd-9-3461-2016
- Pathirana, G., J.-H. Oh, W. Cai, S.-I. An, S.-K. Min, S.-Y. Jo, J. Shin, and J.-S. Kug (2023).

 Increase in convective extreme El Niño events in a CO₂ removal scenario, *Science Advances*, 9(25), eadh2412. https://doi.org/10.1126/sciadv.adh2412
- 430 Pryor, S., and R. J. Barthelmie (2021). A global assessment of extreme wind speeds for wind

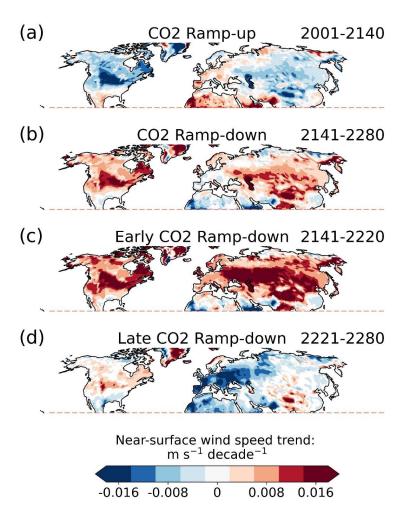
- energy applications, *Nature Energy*, *6*(3), 268–276. https://doi.org/10.1038/s41560-020-00773-7
- Pryor, S., R. J. Barthelmie, M. S. Bukovsky, L. R. Leung, and K. Sakaguchi (2020). Climate change impacts on wind power generation, *Nature Reviews Earth & Environment*, *1*(12), 627–643. https://doi.org/10.1038/s43017-020-0101-7
- Rahmstorf, S (2024). Is the Atlantic overturing circulation approaching a tipping point?

 Oceanography, 37(3), 16–29. https://doi.org/10.5670/oceanog.2024.501
- Shen, C., J. Zha, D. Zhao, J. Wu, W. Fan, M. Yang, and Z.-B. Li (2021). Estimating centennial-scale changes in global terrestrial near-surface wind speed based on CMIP6 GCMs,
 Environmental Research Letters, 16(8), 084039. https://doi.org/10.1088/1748-9326/ac1378
- Shen, C., J. Zha, Z.-B. Li, C. Azorin-Molina, K. Deng, L. Minola, and D. Chen (2022).
 Evaluation of global terrestrial near-surface wind speed simulated by CMIP6 models and
 their future projections, *Annals of the New York Academy of Sciences*, *1518*(1), 249–263.
 https://doi.org/10.1111/nyas.14910
- Shen, C., H. Yuan, Z.-B. Li, X. Yang, L. Minola, Y. Chang, and D. Chen (2023). March near-surface wind speed hiatus over China since 2011, *Geophysical Research Letters*, *50*(15), e2023GL104230. https://doi.org/10.1029/2023GL104230
- Shen, C., Z.-B. Li, H. Yuan, Y. Yu, Y. Lei, and D. Chen (2024). Increases of offshore wind potential in a warming world, *Geophysical Research Letters*, 50(15), e2024GL109494. https://doi.org/10.1029/2024GL109494
- Shen, C., Z.-B. Li, F. Liu, H. W. Chen, and D. Chen (2025). A robust reduction in near-surface wind speed after volcanic eruptions: Implications for wind energy generation, *The Innovation*, 6(1), 100734. https://doi.org/10.1016/j.xinn.2024.100734
- Smith, R., P. Jones, B. Briegleb, F. Bryan, G. Danabasoglu, J. Dennis, et al. (2010). The parallel
 ocean program (POP) reference manual ocean component of the community climate
 system model (CCSM) and community earth system model (CESM). LAUR-01853 (pp.
 1–140).
- Su, X., G. Huang, L. Wang, and T. Wang (2024). Global drought changes and attribution under
 carbon neutrality scenario, *Climate Dynamics*, 62, 7851–7868.
 https://doi.org/10.1007/s00382-024-07310-2
- Taylor, K. E., R. J. Stouffer, and G. A. Meehl (2012). An overview of CMIP5 and the experiment design, *Bulletin of the American Meteorological Society*, 93(4), 485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
- Wu, J., J. Zha, D. Zhao, and Q. Yang (2018). Changes in terrestrial near-surface wind speed
 and their possible causes: an overview, *Climate Dynamics*, 51(5–6), 2039–2078.
 https://doi.org/10.1007/s00382-017-3997-y
- Wu, P., J. Ridley, A. Pardaens, R. Levine, and J. Lowe (2014). The reversibility of CO₂ induced
 climate change, *Climate Dynamics*, 45, 745–754. https://doi.org/10.1007/s00382-014-2302-6
- Wu, P., R. Wood, J. Ridley, and J. Lowe (2010). Temporary acceleration pf the hydrological cycle in response to a CO₂ rampdown, *Geophysical Research Letters*, *37*(12), L043730. https://doi.org/10.1029/2010GL043730


https://doi.org/10.5194/egusphere-2025-1377 Preprint. Discussion started: 28 March 2025 © Author(s) 2025. CC BY 4.0 License.

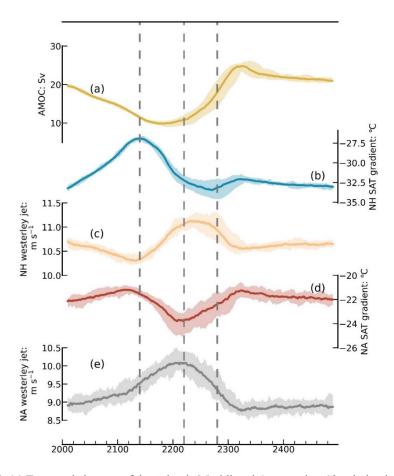
- Yang, Y.-M., J. Shin, S.-W. Park, J.-H. Park, S.-I. An, J.-S., Kug, S.-W. Yeh, et al. (2024). Fast
 reduction of Atlantic SST threatens Europe-wide gross primary productivity under
 positive and negative CO2 emissions. *npj Climate and Atmospheric Science*, 7(1), 117.
 https://doi.org/10.1038/s41612-024-00674-6
- Yeh, S.-W., S.-Y. Song, R. P. Allan, S.-I. An, and J. Shin (2021). Contrasting response of
 hydrological cycle over land and ocean to a changing CO₂ pathway, *npj Climate and Atmospheric Science*, 4, 53. https://doi.org/10.1038/s41612-021-00206-6
- Yu, Y., Z.-B. Li, Z. Yan, H. Yuan, and C. Shen (2024). Projected emergence seasons of year maximum near-surface wind speed, *Geophysical Research Letters*, 51(2).
 https://doi.org/10.1029/2023GL107543
- Zeng, Z., A. D. Ziegler, T. Searchinger, L. Yang, A. Chen, K. Ju, S. Piao, L. Z. Li, P. Ciais, and
 D. Chen (2019). A reversal in global terrestrial stilling and its implications for wind
 energy production, *Nature Climate Change*, 9(12), 979–985.
 https://doi.org/10.1038/s41558-019-0622-6
- Zha, J., C. Shen, Z.-B. Li, J. Wu, D. Zhao, W. Fan, M. Sun, C. Azorin-Molina, and K. Deng
 (2021). Projected changes in global terrestrial near-surface wind speed in 1.5° C–4.0° C
 global warming levels, *Environmental Research Letters*, 16(11), 114016.
 https://doi.org/10.1088/1748-9326/ac2fdd
- Zha, J., C. Shen, J. Wu, D. Zhao, W. Fan, H. Jiang, and T. Zhao (2023). Evaluation and
 projection of changes in daily maximum wind speed over China based on CMIP6.
 Journal of Climate, 36(5), 1503–1520. https://doi.org/10.1175/JCLI-D-22-0193.1
- Zhang, R., R. Sutton, G. Danabasoglu, Y. O. Kwon, R. Marsh, S. G. Yeager, D. E. Amrhein,
 and C. M. Little (2019). A review of the role of the Atlantic meridional overturning
 circulation in Atlantic multidecadal variability and associated climate impacts, *Reviews* of Geophysics, 57(2), 316–375. https://doi.org/10.1029/2019RG000644
- Zhang, S., and X. Li (2020). Future projections of offshore wind energy resources in China using CMIP6 simulations and a deep learning-based downscaling method, *Energy*, 217, 119321. https://doi.org/10.1016/j.energy.2020.119321
- Zhang, S., X. Qu, G. Huang, and P. Hu (2023). Asymmetric response of South Asian summer
 monsoon rainfall in a carbon dioxide removal scenario, *npj Climate and Atmospheric Science*, 6(1), 10. https://doi.org/10.1038/s41612-023-00338-x

Figure 1. (a) Temporal changes of the annual global mean surface air temperature (SAT; unit: $^{\circ}$ C) (blue) and CO₂ concentration (unit: ppm) (red). The solid lines represent the ensemble means, while the shaded areas indicate the 25th to 75th percentile range across 28 members. Three dashed gray lines mark the years 2140, 2220, and 2280, highlighting important temporal milestones in the experiment. (b) Temporal changes of annual-mean terrestrial near-surface wind speed (NSWS; unit: m s⁻¹) over Northern Hemisphere (20 $^{\circ}$ N–70 $^{\circ}$ N) (orange). Anomalies are calculated relative to the average NSWS of the constant CO₂ scenario. An 11-year running mean has been applied to smooth out inter-annual variability.

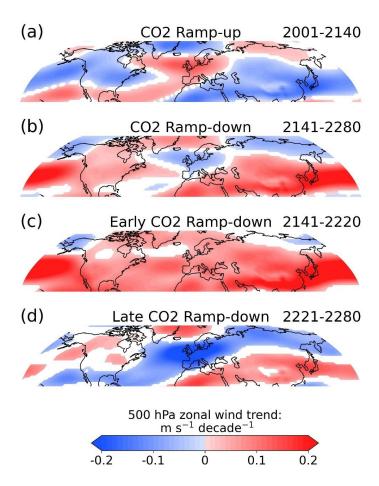


516517

518


519520

521


Figure 2. (a) Decadal trend in annual-mean near-surface wind speed (unit: m s⁻¹ decade⁻¹) during the CO₂ ramp-up period (2001–2140). Grid points with shadings denote the tendencies are significant at the 0.05 level. (b–d) Same as (a), but for tendencies during the CO₂ ramp-down period (2141–2280), early CO₂ ramp-down period (2141–2220), and late CO₂ ramp-down period (2221–2280), respectively.

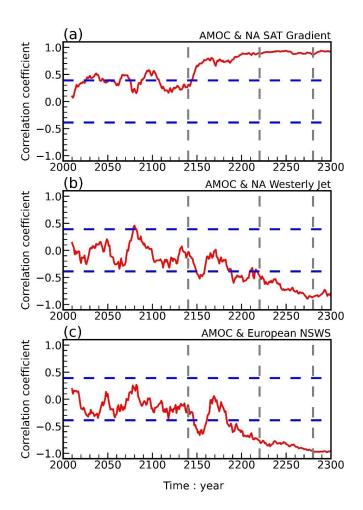

Figure 3. (a) Temporal changes of the Atlantic Meridional Overturning Circulation index (unit: Sv). The solid line represents the ensemble mean, and the shaded area shows the 25th to 75th percentile range of 28 ensemble members. Dashed gray lines at 2140, 2220, and 2280 denote significant temporal markers. (b–e) Same as (a), but for Northern Hemisphere (NH) surface air temperature gradient (60°N–90°N minus 0°N–30°N; in °C), NH westerly jet strength (the average for 30°N–60°N; in m s⁻¹) at 500 hPa, North Atlantic (NA, 60°W–30°E) surface air temperature gradient (60°N–90°N minus 0°N–30°N; in °C), and NA westerly jet strength (the average for 30°N–60°N, 60°W–30°E; in m s⁻¹) at 500 hPa, respectively. An 11-year running mean has been applied to smooth out inter-annual variability.

Figure 4. (a) Tendencies of ensemble-mean annual-mean 500 hPa zonal wind (unit: m s⁻¹ decade⁻¹) during the CO₂ ramp-up period (2001–2140). Grid points with shadings denote the tendencies are significant at the 0.05 level. (b–d) Same as (a), but for tendencies during the CO₂ ramp-down period (2141–2280), early CO₂ ramp-down period (2141–2220), and late CO₂ ramp-down period (2221–2280), respectively.

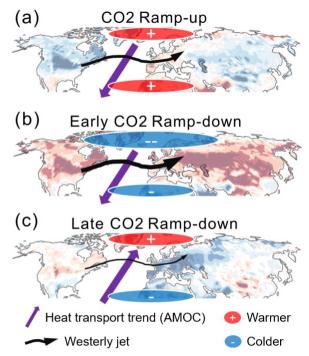


Figure 5. (a) Inter-ensemble correlation coefficients between the 28 ensemble members: the AMOC versus North Atlantic (NA, 60°W–30°E) surface air temperature (SAT) gradient (60°N–90°N minus 0°N–30°N) from 2000 to 2300. Three dashed gray lines denote 2140, 2220 and 2280, respectively. Two dashed blue lines denote the 0.05 significance level. (b) Same as (a), but for correlation coefficients between the AMOC and NA westerly jet strength (30°N–60°N, 60°W–30°E) at 500 hPa. (c) Same as (a), but for correlation coefficients between the AMOC and terrestrial near-surface wind speed (NSWS) over Europe (30°N–60°N, 5°W–60°E). An 11-year running mean has been applied to smooth out inter-annual variability.

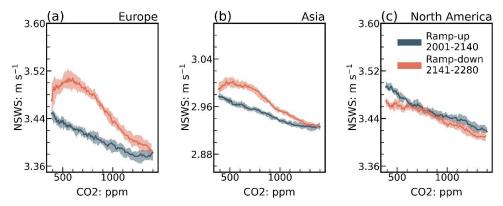


Figure 6. The physical mechanisms by which CO2 and Atlantic Meridional Overturning Circulation modulate extratropical near-surface wind speed during three periods.

551552553

Figure 7. (a) Changes of terrestrial annual-mean near-surface wind speed over Europe (30°N–70°N, 5°W–50°E) as a function of CO₂ concentrations after 11-year running mean. The rampup (dark blue) and ramp-down (orange) are denoted with different colors. The solid line represents the ensemble mean, and the shaded area shows the 25th to 75th percentile range of 28 ensemble members. (b-c) Same as (a), but for Asia (20°N–70°N, 60°E–180°E) and North America (30°N–70°N, 170°W–50°W). The range of Y-axis is 0.25 m s⁻¹ in each subplot.